

XLC 400 - Versione anti-cavitazione CP - Dettagli costruttivi

N.	Componente	Materiale standard	Optional
1	Corpo	ghisa sferoidale GJS 500-7 o GJS 450-10	
2	Cappello	ghisa sferoidale GJS 500-7 o GJS 450-10	
3	Indicatore di posizione	ac. inox AISI 303 (ottone nichelato dal DN 300)	acciaio inox AISI 303
4	Tappi delle prese di pressione	acciaio inox AISI 316	
5	O-ring del piattello superiore	NBR	EPDM/Viton
6	O-ring dell'otturatore	NBR	EPDM/Viton
7	Asta d'indicazione	acciaio inox AISI 303	
8	Albero di guida	acciaio inox AISI 303	acciaio inox AISI 316
9	Boccola di guida	bronzo CuSn5Zn5Pb5	acciaio inox AISI 303/316
10	Molla	acciaio inox AISI 302	
11	Dado di serraggio	acciaio inox AISI 304	acciaio inox AISI 316
12	Piattello superiore	acciaio verniciato Fe 37	acciaio inox AISI 304/316
13	Membrana	poliammide-Nylon	neoprene/EPDM-Nylon
14	Otturatore	AISI 303 (DN 50-65), acc. vern., ghisa sf. (dal DN 150)	acciaio inox AISI 303/316
15	Guarnizione piana	NBR	
16	Controseggio anti-cavitazione CP	acciaio inox AISI 303 (304 dal DN 150)	acciaio inox AISI 316
17	Sede di tenuta anti-cavitazione CP	acciaio inox AISI 303 (316 dal DN 150)	acciaio inox AISI 316
18	O-ring della sede di tenuta	NBR	EPDM/Viton
19	Prigionieri	acciaio inox AISI 304	acciaio inox AISI 316
20	Dadi e rondelle	acciaio inox AISI 304	acciaio inox AISI 316

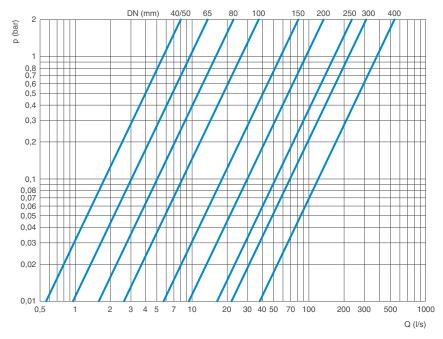
La tabella materiali e componenti può essere soggetta a cambiamenti senza preavviso.

XLC 400 - Versione anti-cavitazione CP - Dati tecnici

DN (mm)	40	50	65	80	100	150	200	250	300	400
Kv (m³/h)	20	20	34	50	84	205	331	563	752	1337
Corsa (mm)	15	15	18	21	27	43	56	70	84	110

(eg) et ou group g

Coefficiente perdite di carico


Il coefficiente Kv rappresenta la portata che produce una perdita di carico di 1 bar nella valvola completamente aperta.

Abaco della cavitazione

È importante considerare il rischio di cavitazione, che può provocare danni ingenti, oltre a vibrazioni e rumore. Sul grafico, il punto corrispondente alla condizione d'esercizio della valvola, individuato dai valori della pressione di valle (in ascissa) e di monte (in ordinata), cade in una delle due zone identificate come segue:

- A: funzionamento ottimale;
- B: cavitazione dannosa.

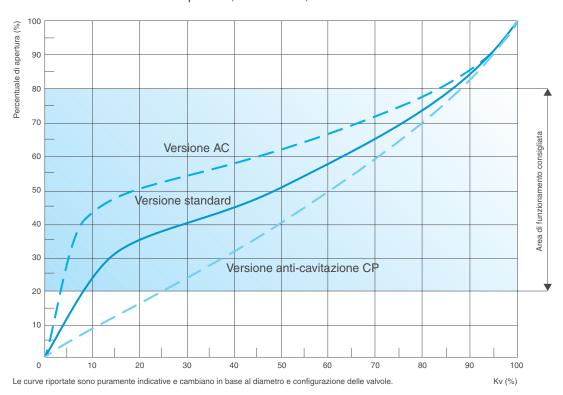
Il grafico dev'essere usato per valvole modulanti con percentuale d'apertura di 35-40% alla temperatura standard ed altitudine inferiore ai 300 m. Dati per analisi più accurate si ottengono dal programma di dimensionamento delle valvole di controllo CSA-CVS.

Abaco delle perdite di carico

Il grafico a lato riporta le perdite di carico delle valvole automatiche di controllo XLC 400 nella posizione di completa apertura in funzione del diametro e della portata espressa in l/s.

Tabella di dimensionamento

La tabella seguente indica le portate consigliate per il corretto utilizzo delle valvole automatiche XLC 400.


DN (mm)				65	80	100	150	200	250	300	400
Portata (I/s)	Valori consigliati	Min.	0,4	0,7	1,0	1,6	3,5	6,3	9,8	14	25
Tortala (1/5)		Max.	3,9	6,6	9,7	16	40	64	109	146	260
	Sfioro pressione	Max.	9,8	16	25	39	88	157	245	353	628

XLC 400 - Versioni standard e anti-cavitazione - Dati tecnici

Diagramma apertura valvola-Kv

Il grafico che segue riporta il Kv delle valvole XLC 400 nelle versioni standard e anti-cavitazione in relazione alla corsa dell'otturatore (entrambi i valori sono espressi in percentuale). Consigliamo di dimensionare i modelli in modo da limitare la variazione dell'apertura, in esercizio, tra il 20% e 80%.

Condizioni d'esercizio

Acqua trattata filtrata.

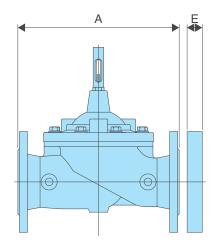
Temperatura massima 70°C.

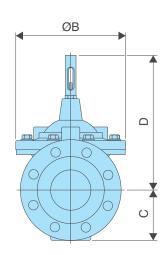
Pressione min. sul pilota: 0,5 bar più perdita di carico.

Pressione massima: 25 bar.

Standard

Progetto secondo la norma EN 1074.


Flange forate secondo EN 1092-2; forature differenti su richiesta.


Vernice epossidica blu RAL 5005 applicata a letto fluido.

Classe PN 25 bar.

Dimensioni e pesi

DN (mm)	A (mm)	B (mm)	C (mm)	D (mm)	E (mm)	Peso (Kg)
40	230	162	83	233	30	18
50	230	162	83	233	30	18
65	290	194	93	255	30	23,5
80	310	218	100	274	30	28
100	350	260	118	316	30	39
150	480	370	150	431	30	84
200	600	444	180	540	30	138
250	730	570	213	577	40	264
300	850	680	242	598	40	405
400	1100	870	310	895	40	704

La dimensione indicata con la lettera E nella tabella soprastante si riferisce solo alle applicazioni in cui venga richiesto l'utilizzo di una flangia tarata, come ad esempio controllo di portata o riduzione della cavitazione.